Exercise 53

Suppose that $|f(x)| \leq g(x)$ for all x, where $\lim _{x \rightarrow a} g(x)=0$. Find $\lim _{x \rightarrow a} f(x)$.

Solution

Suppose that

$$
|f(x)| \leq g(x) .
$$

Rewrite the inequality.

$$
-g(x) \leq f(x) \leq g(x)
$$

Take the limit of all sides as $x \rightarrow a$.

$$
\lim _{x \rightarrow a}[-g(x)] \leq \lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)
$$

Bring the minus sign in front.

$$
-\lim _{x \rightarrow a} g(x) \leq \lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)
$$

Evaluate the limits on the left and right sides using the fact that $\lim _{x \rightarrow a} g(x)=0$.

$$
\begin{gathered}
-(0) \leq \lim _{x \rightarrow a} f(x) \leq 0 \\
0 \leq \lim _{x \rightarrow a} f(x) \leq 0
\end{gathered}
$$

Therefore, by the Squeeze Theorem,

$$
\lim _{x \rightarrow a} f(x)=0 .
$$

